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Abstract
Purpose To discover common biomarkers correlating with the Mini-Mental State Examination (MMSE) scores from multi-
country MRI datasets.
Methods The first dataset comprised 112 subjects (49 men, 63 women; range, 46–94 years) at the National Hospital Organi-
zation Kyushu Medical Center. A second dataset comprised 300 subjects from the Alzheimer’s Disease Neuroimaging 
Initiative (ADNI) database (177 men, 123 women; range, 57–91 years). Three-dimensional T1-weighted MR images were 
collected from both datasets. In total, 14 deep gray matter volumes and 70 cortical thicknesses were obtained from MR 
images using FreeSurfer software. Total hippocampal volume and the ratio of hippocampus to cerebral volume were also 
calculated. Correlations between each variable and MMSE scores were assessed using Pearson’s correlation coefficient. 
Parameters with moderate correlation coefficients (r > 0.3) from each dataset were determined as independent variables and 
evaluated using general linear model (GLM) analyses.
Results In Pearson’s correlation coefficient, total and bilateral hippocampal volumes, right amygdala volume, and right 
entorhinal cortex (ERC) thickness showed moderate correlation coefficients (r > 0.3) with MMSE scores from the first 
dataset. The ADNI dataset showed moderate correlations with MMSE scores in more variables, including bilateral ERC 
thickness and hippocampal volume. GLM analysis revealed that right ERC thickness correlated significantly with MMSE 
score in both datasets. Cortical thicknesses of the left parahippocampal gyrus, left inferior parietal lobe, and right fusiform 
gyrus also significantly correlated with MMSE score in the ADNI dataset (p < 0.05).
Conclusion A positive correlation between right ERC thickness and MMSE score was identified from multi-country datasets.
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Abbreviations
AD  Alzheimer’s disease
ADNI  Alzheimer’s Disease Neuroimaging Initiative
ANOVA  Analysis of variance
ASHS  Automated segmentation of hippocampal 

subfields
BA  Brodmann area
ERC  Entorhinal cortex
GLM  General linear model
MCI  Mild cognitive impairment
MMSE  Mini-Mental State Examination
MMSE-J  Mini-Mental State Examination Japanese 

version
MTL  Medial temporal lobe
PHC  Parahippocampal cortex

Introduction

Medial temporal lobe (MTL) atrophy is highly associated 
with cognitive performance. Neurofibrillary tangle deposi-
tion is initially seen in the transentorhinal region, while any 
cognitive impairments are not clinically evident at this stage 
[1]. The entorhinal cortex (ERC) is the key feature of Braak 
stage III, which is closely associated with cognitive impair-
ment [1]. The ERC is located medial to the rhinal sulcus 
and comprises the anterior portion of the parahippocampal 
gyrus. The ERC functions as the crucial gateway between 
the hippocampus and neocortex [2, 3]. Thickness of the ERC 
is known to correlate with the effects of β-amyloidosis and 
tauopathic neurodegeneration [4, 5]. Damage to the ERC 
has been shown to impair cognitive function [3, 6, 7]. In 
addition, loss and atrophy of layer II ERC neurons are asso-
ciated with memory test performance and are seen in elderly 
individuals preceding the onset of dementia symptoms [6].

Magnetic resonance imaging (MRI) is the most frequently 
utilized non-invasive technique for computing brain volume 
with high reproducibility. Morphological evaluation using 
MRI has revealed relationships between cortical thickness 
and cognitive test performance in healthy individuals, irre-
spective of scan sessions, scanners, or field strengths [8, 9].

The Mini-Mental State Examination (MMSE) is the most 
commonly used tool in screening for cognitive impairment. 
MMSE provides reliable scores without being influenced by 
repetition or learning, and consistent results can be obtained 
by the same or different examiners on repeat testing [10]. 
Many human studies have demonstrated that MMSE scores 
correlate with ERC thickness or volumes [11–18]. Long 
et al. found the loss of asymmetry in ERC has been shown as 
biomarkers to identify preclinical Alzheimer’s disease (AD) 
[19]. Thus, right and left ERC thicknesses should have dif-
ferent strength of association with MMSE scores. Subfield 
analysis of MTL has been investigated to perform a detailed 

evaluation of MTL subregions, and the analysis has offered 
insight into the early diagnosis and monitoring of AD [13]. 
However, the relevance between MMSE scores and ERC 
thickness in multi-country datasets remains unknown. The 
Alzheimer’s Disease Neuroimaging Initiative (ADNI) is an 
open data sharing framework and the largest database of 
elderly subjects in the USA [20].

The present study aimed to discover common biomark-
ers correlating with MMSE scores using MRI datasets from 
both National Hospital Organization Kyushu Medical Center 
(KMC) and the ADNI.

Materials and methods

Dataset from KMC

This study was approved by the institutional review board 
of KMC. The requirement for informed consent for study 
participation was waived due to the retrospective nature 
of this study. Data from 200 consecutive patients (90 men, 
110 women; median age, 77 years; range, 36–95 years) who 
underwent MRI between February 2019 and August 2020 
were retrospectively analyzed. Among these, subjects who 
underwent testing using the Japanese version of the MMSE 
(MMSE-J) were included in the present study. Exclusion 
criteria were as follows: (i) patients with severe head motion 
artifacts; or (ii) patients with treatable dementias such as idi-
opathic normal-pressure hydrocephalus, brain tumor, meta-
bolic, infectious, inflammatory, or drug-induced cognitive 
impairment, or history of stroke other than small vessel dis-
ease. Motion artifact and the presence of intracranial abnor-
mality on the MR images were evaluated by an experienced 
radiologist (K.Y.).

Three-dimensional (3D) T1-weighted imaging was per-
formed using a 1.5-T MRI unit (Magnetom Symphony Tim, 
Siemens, Erlangen, Germany) with a 6-channel head coil. 
The following scanning parameters were used: repetition 
time, 1700 ms; echo time, 3.4 ms; inversion time, 800 ms; 
flip angle, 15°; 144 sagittal sections; slice thickness = 1.25 
× 1.25 × 1.25  mm3; field of view, 230 × 230  mm2; matrix, 
256 × 256.

Dataset from the ADNI database

Images from 3D T1-weighted MRI were collected from the 
ADNI database (http:// adni. loni. usc. edu/). The representa-
tive voxel resolution of ADNI (ADNI1) data was 1 × 1 × 
1.2  mm3. The dataset comprised 300 subjects (177 men, 123 
women; median age, 76 years; range, 57–91 years). These 
subjects comprised 100 subjects each for normal controls, 
mild cognitive impairment (MCI), and AD.

http://adni.loni.usc.edu/
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Preprocessing of 3D T1‑weighted images 
from the two datasets using the FreeSurfer pipeline

All MR images from the two datasets were preprocessed with 
the FreeSurfer pipeline (version 6.0.0) [21, 22], a freely avail-
able software commonly used for brain structural MRI analy-
sis. The automatic reconstruction steps include non-uniform 
intensity normalization, automatic subcortical segmentation, 
resampling of the average curvature from the atlas to sub-
ject, cortical parcellation using the Desikan-Killiany corti-
cal atlas [23], and parcellation statistics (https:// surfer. nmr. 
mgh. harva rd. edu/ fswiki/ recon- all). A representative parcel-
lation image is shown in Fig. 1a. A detailed description of the 
reconstruction steps has been provided elsewhere [22]. The 
entire cortex of each subject was visually inspected, and the 
topological defects were manually corrected [24]. Volume 
data of bilateral hippocampi, amygdalas, thalami, putamina, 
caudate nuclei, globi pallidi, nuclei accumbentes, and total 
corpora callosa were collected from the cortical parcella-
tion atlas. Mean cortical thickness of the right hemisphere, 
left hemisphere, and 70 cortical thicknesses (35 variables 
in each hemisphere) were also attained from the atlas. Total 
hippocampal volume and the ratio of hippocampus to the cer-
ebral volume were also calculated. These variables including 
subject age were used for further analyses.

Preprocessing of 3D T1‑weighted images 
from the two datasets using the automatic 
segmentation of hippocampal subfields pipeline

All MR images from the two datasets were implemented 
in the automatic segmentation of hippocampal subfields 
(ASHS)-Penn Memory Center (PMC)-T1 pipeline (version 
1.0.0) [25]. The ASHS-PMC-T1 pipeline consists of multi-
atlas algorithm by manual segmentation of the MTL cortex 
and machine learning techniques. The detailed protocol has 
been reported elsewhere [13, 25]. Automated segmentation of 
anterior/posterior hippocampus, ERC, Brodmann areas (BA) 
35 and 36, and parahippocampal cortex (PHC) from each sub-
ject via ITK-SNAP distributed segmentation service (https:// 
dss. itksn ap. org), and volume of each subregion was calculated 
using ITK-SNAP software (version 3.8.0) [26]. A representa-
tive segmentation of MTL subregions is indicated in Fig. 1b.

MMSE

We were interested in testing whether some variables 
derived from multi-country datasets correlated with MMSE 
scores. To address this question, subjects who completed 
the MMSE-J at KMC or the MMSE from ADNI cohorts 
were included for analysis. The MMSE-J and MMSE were 
administered to screen for cognitive impairments, with all 
assessments performed by experienced examiners. MMSE-J 

and MMSE scores were obtained from each subject at KMC 
and from the ADNI database, respectively.

Statistical analysis

All statistical analyses were performed using PASW Statis-
tics version 18 (SPSS Inc., Chicago, IL, USA) and graphs 
were plotted in Prism version 7 (GraphPad Software, La 
Jolla, San Jose, CA, USA).

Correlations between each variable including subject 
age and MMSE score (MMSE-J at KMC and MMSE from 
ADNI cohorts) were assessed using Pearson’s correlation 
coefficient. Overfitting occurs when too many variables 
included in the regression analysis [27, 28]. According 

Fig. 1  Representative images of the FreeSurfer automated brain par-
cellation (a) and the automatic segmentation of hippocampal sub-
fields (ASHS-T1) pipeline (b).

https://surfer.nmr.mgh.harvard.edu/fswiki/recon-all
https://surfer.nmr.mgh.harvard.edu/fswiki/recon-all
https://dss.itksnap.org
https://dss.itksnap.org
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to the literatures, the parameters showing moderate cor-
relation coefficients (r > 0.3) [29] from each dataset were 
then taken as independent variables and evaluated using 
one-way analysis of variance (ANOVA) with general lin-
ear model (GLM) analyses. In addition, thickness of the 
right ERC was compared with that of the left ERC for both 
datasets using two-tailed Student’s t-tests. Thicknesses of 
the right and left ERC were compared among normal con-
trols, MCI, and AD from the ADNI dataset using one-way 
ANOVA followed by Student’s t-tests with Bonferroni cor-
rections for multiple comparisons, respectively.

Next, correlations between volume of each MTL subre-
gions and MMSE score were assessed using Pearson’s cor-
relation coefficient. Parameters showing moderate correla-
tion coefficients (r > 0.3) from each dataset were then taken 
as independent variables and evaluated using GLM analysis. 
Volumes of right and left ERC were compared among nor-
mal controls, MCI, and AD from the ADNI dataset using 
one-way ANOVA followed by Student’s t-tests with Bon-
ferroni corrections for multiple comparisons, respectively.

Values of p < 0.05 were considered indicative of statis-
tical significance in all statistical analyses.

Results

One hundred and twelve subjects from KMC fulfilled the 
criteria (49 men, 63 women; median age, 77 years; range, 
46–94 years). Demographic and clinical information for 
subjects are presented in Table 1. Mean age did not differ 
significantly between datasets.

Pearson’s correlation coefficients of the dataset 
from KMC with the FreeSurfer pipeline

Table 2 shows the correlations between MMSE score and 
values from the KMC dataset. Variables with moderate 

correlation coefficients (r > 0.3) were thicknesses of the 
right ERC and right insular cortex, and volumes of the right 
amygdala and right, left, and total hippocampi. All variables 
with moderate correlation coefficients showed positive cor-
relations with MMSE scores.

Pearson’s correlation coefficients of the ADNI 
dataset with the FreeSurfer pipeline

Table 3 shows the correlations between MMSE score and 
values from the ADNI dataset. More variables had moderate 
correlation coefficients (r > 0.3) than KMC dataset as shown 
in Table 3. All variables with moderate correlation coef-
ficients displayed positive correlations with MMSE scores.

GLM analysis of both datasets with the FreeSurfer 
pipeline

GLM analysis demonstrated that right ERC thickness cor-
related significantly with MMSE score for the first dataset 
(p = 0.005; Fig. 2a), and thickness of the right ERC (p = 
0.039; Fig. 2b), parahippocampal gyrus (p = 0.023), left 
inferior parietal lobe (p = 0.025), and right fusiform gyrus (p 
= 0.035) for the ADNI dataset. Figure 2 shows scatter plots 
and linear regression lines for right ERC thickness from both 
datasets.

Differences in right and left ERC thickness

The dataset from KMC exhibited that the right ERC 
tended to be thicker (mean ± standard deviation [SD] 
= 3.07 ± 0.54 mm) than the left ERC (mean = 3.00 ± 
0.49 mm), although the difference was not significant 
(p = 0.0663; Fig. 3a). In the ADNI dataset, the right 
ERC was significantly thicker (mean = 2.81 ± 0.47 mm) 
than the left ERC (mean = 2.70 ± 0.45 mm; p = 0.0226) 
(Fig. 3b).

Table 1  Summary of demographic and clinical characteristics

Character-
istic

KMC ADNI

(n = 112) NC (n = 
100)

MCI (n = 
100)

AD (n = 100)

M/F 49/63 57/43 69/31 51/49
Age (years 

old)
46–94 60–90 58–89 57–91

Median age 77 76 76 75
MMSE 

score
9–30 25–30 24–30 18–27

Median 
MMSE

26 29 27 23.5

Table 2  Pearson’s R and ANOVA with general linear model (GLM) 
between KMC data and MMSE scores with the FreeSurfer pipeline

Note: *Statistical significance (p < 0.05). The underscores represent 
volume variables

Pearson’s R ANOVA 
with GLM

R square P value P value

R_entorhinal 0.1682 < 0.0001 0.005*
R_hippocampus 0.1547 < 0.0001 -
Total_hippocampus 0.1423 < 0.0001 -
R_insula 0.1252 0.0001 0.050
R_amygdala 0.1188 0.0002 0.157
L_hippocampus 0.107 0.0004 -
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ERC thickness among normal control, MCI, and AD

The right ERC was thickest with normal control (mean = 
3.41 ± 0.47 mm), followed by MCI (mean = 3.08 ± 0.53 
mm) and AD (mean = 2.73 ± 0.50 mm; p < 0.0001, each) 
in descending order (Fig. 4a). The left ERC was also the 

thickest with normal control (mean = 3.31 ± 0.29 mm), 
followed by MCI (mean = 3.01 ± 0.45 mm) and AD (mean 
= 2.67 ± 0.47 mm; p < 0.0001, each) in descending order 
(Fig. 4b). The right ERC was significantly thicker than the 
left ERC in normal control (p = 0.0255), while we found no 
significant difference between them in MCI (p = 0.82) and 
AD (p > 0.99) groups.

Pearson’s correlation coefficients of the dataset 
from KMC with the ASHS‑PMC‑T1 pipeline

Variables with moderate correlation coefficients (r > 0.3) 
were volumes of the right anterior/posterior hippocampi, 

Table 3  Pearson’s R and ANOVA with GLM between the ADNI data 
and MMSE score

Note: *Statistical significance (p < 0.05). The underscores represent 
volume variables

Pearson’s R ANOVA 
with GLM

R square P value P value

L_inferiortemporal 0.2741 < 0.0001 0.111
L_entorhinal 0.2535 < 0.0001 0.487
R_entorhinal 0.2487 < 0.0001 0.039*
L_middletemporal 0.2378 < 0.0001 0.189
R_fusiform 0.2361 < 0.0001 0.035*
L_fusiform 0.221 < 0.0001 0.766
Total hippocampus 0.2153 < 0.0001 0.798
L_hippocampus 0.2122 < 0.0001 0.813
Hippocampus/cerebrum 0.1999 < 0.0001 0.647
R_inferiortemporal 0.1951 < 0.0001 0.998
L_superiortemporal 0.1938 < 0.0001 0.322
R_middletemporal 0.1936 < 0.0001 0.444
L_amygdala 0.1922 < 0.0001 0.448
R_hippocampus 0.189 < 0.0001 -
L_mean cortical thickness 0.1781 < 0.0001 0.36
R_amygdala 0.1741 < 0.0001 0.185
R_inferiorparietal 0.1675 < 0.0001 0.492
R_mean cortical thickness 0.1593 < 0.0001 0.159
L_inferiorparietal 0.1584 < 0.0001 0.025*
L_temporalpole 0.158 < 0.0001 0.81
R_superiortemporal 0.1571 < 0.0001 0.87
L_parahippocampal 0.1418 < 0.0001 0.023*
R_banks of superior temporal 

sulcus
0.136 < 0.0001 0.479

L_banks of superior temporal 
sulcus

0.1231 < 0.0001 0.677

R_temporalpole 0.1205 < 0.0001 0.503
L_precuneus 0.118 < 0.0001 0.19
L_medialorbitofrontal 0.1169 < 0.0001 0.623
R_insula 0.1098 < 0.0001 0.646
L_insula 0.1091 < 0.0001 0.256
R_precuneus 0.1067 < 0.0001 0.643
L_supramarginal 0.1055 < 0.0001 0.397
R_medialorbitofrontal 0.0994 < 0.0001 0.568
R_superiorfrontal 0.0951 < 0.0001 0.537
R_caudalmiddlefrontal 0.0938 < 0.0001 0.633
R_rostralmiddlefrontal 0.0924 < 0.0001 0.315
L_isthmuscingulate 0.0909 < 0.0001 0.675

Fig. 2  Scatter plots and linear regression lines of the right ERC thick-
ness from National Hospital Organization Kyushu Medical Center 
(KMC; a) and the ADNI dataset (b). GLM analysis demonstrated that 
right ERC thickness correlated positively with MMSE scores for the 
first dataset (p = 0.005), and thickness of the right ERC (p = 0.039) 
for the ADNI dataset. NC, MCI, and AD represent normal control, 
mild cognitive impairment (MCI), and Alzheimer’s disease, respec-
tively.
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right ERC, left posterior hippocampus, and right BA35 
(Table 4). All variables showed positive correlations with 
MMSE scores.

Pearson’s correlation coefficients of the dataset 
from ADNI with the ASHS‑PMC‑T1 pipeline

Variables with moderate correlation coefficients (r > 0.3) 
were volumes of the right and left anterior/posterior hip-
pocampi, right and left ERC, right and left BA35, right 
and left BA 36, and left PHC (Table 5). All variables dis-
played positive correlations with MMSE scores.

GLM analysis of both datasets 
with the ASHS‑PMC‑T1 pipeline

GLM analysis demonstrated that no variable correlated sig-
nificantly with MMSE score for the first dataset (Table 4), 
while volumes of the left posterior hippocampus (p = 0.023) 

and left BA36 (p = 0.012; Table 5) had significant correla-
tion with MMSE score for the ADNI dataset.

Fig. 3  Differences in the right and left ERC thickness from KMC (a) 
and the ADNI dataset (b). The right ERC tended to be thicker than 
the left ERC, although no significant difference (p = 0.0663) was 
reported from KMC dataset. In the ADNI dataset, the right ERC was 
significantly thicker than the left ERC (p = 0.0226).

Fig. 4  Right (a) and left ERC (b) thicknesses of normal control, MCI, 
and AD groups. The right ERC was the thickest with normal con-
trol (mean = 3.41 ± 0.47 mm), followed by MCI (mean = 3.08 ± 
0.53 mm) and AD (mean = 2.73 ± 0.50 mm; p < 0.0001, each) in 
descending order (a). The left ERC was also the thickest with normal 
control (mean = 3.31 ± 0.29 mm), followed by MCI (mean = 3.01 
± 0.45 mm) and AD (mean = 2.67 ± 0.47 mm; p < 0.0001, each) in 
descending order (b). The double asterisk indicates p < 0.0001

Table 4  Pearson’s R and ANOVA with GLM between KMC data and 
MMSE scores with the ASHS-PMC-T1 pipeline

Pearson’s R ANOVA 
with GLM

R square P value P value

R_posterior hippocampus 0.136 < 0.0001 0.418
R_ERC 0.1279 0.0001 0.416
L_posterior hippocampus 0.1121 0.0003 0.730
R_anterior hippocampus 0.1019 0.0006 0.598
R_BA35 0.0924 0.0011 0.841
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ERC volume among normal control, MCI, and AD

The right ERC was the largest with normal control (mean 
= 574 ± 92.4  mm3), followed by MCI (mean = 503 ± 116 
 mm3; p < 0.0001) and AD (mean = 451 ± 107  mm3; p = 
0.0017) in descending order (Fig. 5a). The left ERC was 
largest with normal control (mean = 586 ± 98.7  mm3), fol-
lowed by MCI (mean = 491 ± 118  mm3; p < 0.0001) and 
AD (mean = 439 ± 118  mm3; p = 0.0036) in descending 
order (Fig. 5b).

Discussion

Thickness of the right ERC was the common variable which 
was significantly associated with MMSE score using multi-
country datasets in this study. The ERC is pivotally involved 
in working memory and spatial information [30–32], and 
mediates the interactions of memory consolidation between 
the hippocampus and neocortex [31]. Microscopically, grid 
cells are spatially modulated neurons that have been identi-
fied in and around the ERC in mammalian species [33]. Grid 
cells in the medial ERC generate metric spatial representa-
tions [34] and are part of a spatial coordinate system [35]. 
The ERC is thus the hub of a widespread brain network for 
navigation and spatial memory [31, 32, 35, 36]. ERC vol-
ume [19, 37] and thickness [11, 12, 14–17, 38] are report-
edly associated with progression of AD. MMSE scores have 
been widely used to assess cognitive function. Moreover, 
the domain of spatial orientation and memory contributes 
a large proportion of potential points [39]. Taken together, 
ERC may play key roles in spatial orientation and memory, 
and MMSE scores appear reasonable to predict thickness 
of the ERC.

The right ERC tended to be thicker than the left ERC in 
both datasets. Asymmetry of the cortical thickness report-
edly correlates with cognitive function [40]. Previous 
research has suggested that the volume of the right ERC is 
greater than that of the left ERC in both normal subjects and 
patients with AD [37]. Volume of the right ERC was signifi-
cantly associated with progression of MCI to AD [41]. The 
apolipoprotein E (ApoE) ɛ4 allele is a well-established risk 
factor for AD [42]. Juottonen et al. suggested that the ApoE 
ɛ4 allele contributes to atrophy, particularly for the right 
ERC [37]. That study showed an association between ApoE 
ɛ4 allele and neuropathological findings such as increased 
amyloid plaques and neurofibrillary tangles. Interestingly, 
the right ERC was significantly thicker than the left ERC 
in normal control, while we found no significant difference 

Table 5  Pearson’s R and ANOVA with GLM between the ADNI data 
and MMSE score with the ASHS-PMC-T1 pipeline

Note: *Statistical significance (p < 0.05)

Pearson’s R ANOVA 
with GLM

R square P value P value

L_posterior hippocampus 0.2217 < 0.0001 0.023*
R_posterior hippocampus 0.1727 < 0.0001 0.874
L_ERC 0.1708 < 0.0001 0.174
L_BA36 0.1445 < 0.0001 0.012*
R_ERC 0.1366 < 0.0001 0.793
L_BA35 0.1365 <0.0001 0.541
L_anterior hippocampus 0.1363 < 0.0001 0.789
R_BA35 0.1221 < 0.0001 0.207
R_anterior hippocampus 0.1166 < 0.0001 0.666
L_PHC 0.0964 < 0.0001 0.630

Fig. 5  Right (a) and left ERC (b) volumes of normal control, MCI, 
and AD groups. The right ERC was the largest with normal control 
(mean = 574 ± 92.4  mm3), followed by MCI (mean = 503 ± 116 
 mm3; p < 0.0001) and AD (mean = 451 ± 107  mm3; p = 0.0017) in 
descending order (a). The left ERC was largest with normal control 
(mean = 586 ± 98.7  mm3), followed by MCI (mean = 491 ± 118 
 mm3; p < 0.0001) and AD (mean = 439 ± 118  mm3; p = 0.0036) 
in descending order (b). The single and double asterisks indicate p < 
0.01 and p < 0.0001, respectively.
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between them in MCI and AD groups. The loss of asym-
metry in ERC has been shown as biomarkers to identify 
preclinical AD [19], and our findings are in line with the 
literature. These findings in our study highlighted that the 
difference in right ERC thickness might be more prominent 
than that of the left ERC, or the right ERC may play a crucial 
role in cognitive function.

Thicknesses of the left parahippocampal gyrus, left infe-
rior parietal lobe, and right fusiform gyrus for the ADNI 
dataset significantly correlated with MMSE scores in GLM 
analyses from the ADNI dataset, but significantly correlated 
with MMSE scores only in Pearson’s correlation coefficients 
from the dataset at KMC. It has been reported that volume 
of the left parahippocampal gyrus is indicative of early bio-
marker of AD [43]. Some genetic variations might influence 
the atrophy rates of parahippocampal gyrus [44]. Mental 
representations are processed within the inferior parietal 
lobule [45]. Mental representation could be influenced by 
racial-ethnic group differences in individualism and collec-
tivism [46]. Right fusiform gyrus is involved in face per-
ception, and damage to the right fusiform gyrus resulted in 
the impairments to normal face recognition [47]. The differ-
ence in correlations between thickness of the right fusiform 
gyrus and MMSE scores from the two datasets might be 
reduced by perceptual training for other race effects [48], 
but this issue is beyond scope of the present study. We 
also observed that volumes of the left posterior hippocam-
pus and left BA36 had significant correlation with MMSE 
score from the ADNI dataset. Similar findings have been 
reported in patients with early stages of AD [13, 49]. BA36 
has been reportedly associated with personality changes 
such as agreeableness and openness [50]. These personal-
ity changes might influence the discrepancy on the GLM 
analysis between the two datasets in our study.

In Pearson’s correlation coefficients, more variables 
including hippocampus volume were associated with MMSE 
scores in our study. A plethora of evidence has suggested 
that hippocampus volume is closely related to cognitive 
function. Our results provide informative data to help dis-
cern the correlations between volume of the hippocampus 
and MMSE scores in a non-invasive manner.

To obtain common characteristics from multi-country 
datasets, the preprocessing pipeline needs to be taken 
into consideration regarding morphological differences 
between various races and ethnicities across multi-country 
datasets. The FreeSurfer pipeline has been used world-
wide to acquire quantitative variables in the brain [22]. 
Discovery of a common variable from multi-country data-
sets appears reasonable for understanding how MMSE 
scores are influenced by the thickness of the right ERC. 
In summary, the present study may allow non-invasive 
creation of predictive models in multi-country datasets 
non-invasively.

Our study has several limitations. First, handedness 
data was unavailable and thus might have influenced the 
laterality result. However, the volume of the right ERC 
is reportedly larger than left ERC volume in both nor-
mal subjects and patients with AD [37]. This study did 
not take into account the potential for differences in the 
questionnaire or detailed rating scales between MMSE and 
MMSE-J. Lastly, MR images were acquired on a 1.5-T unit 
in the present study. Xie et al. proposed the ASHS-PMC-
T1 pipeline without T2-weighted images [13] although the 
combination of T1- and coronal T2-weighted images using 
a 3.0-T unit may provide better segmentation results when 
analyzing MTL subfield.

In conclusion, we found the positive correlations 
between right ERC thickness and MMSE scores using 
multi-country datasets. Computing right ERC thick-
ness may be a potential option in patients with cognitive 
impairment without regard to race or ethnicity.
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